The Software Performance of Authenticated-Encryption Modes

Ted Krovetz Cal State Sacramento Phillip Rogaway UC Davis

AE Syntax

AEAD Syntax

AEAD Decryption

Security Model

Pr[A = I | left scenario] - Pr[A = I | right scenario]

AE Approaches

- Confusion/diffusion: Authentication part of the primitive. (Helix, SOBER,...)
- Composed: Mix of discrete encryption and authentication schemes. (GCM, CCM,...)
- Integrated: Symbiotic encryption and authentication. (IAPM, OCB,...)

AE Block Cipher Modes

scheme	ref	date	ty	high-level description	standard
EtM	[1]	2000	C	Encrypt-then-MAC (and other) generic comp. schemes	ISO 19772
RPC	[23]	2000	Ι	Insert counters and sentinels in blocks, then ECB	
IAPM	[21]	2001	I	Seminal integrated scheme. Also IACBC	
XCBC	[11]	2001	Ι	Concurrent with Jutla's work. Also XECB	
✓ OCB1	[35]	2001	Ι	Optimized design similar to IAPM	
TAE	[28]	2002	Ι	Recasts OCB1 using a tweakable blockcipher	
\checkmark CCM	[39]	2002	C	CTR encryption + CBC MAC	NIST 800-38C
CWC	[24]	2004	C	CTR encryption + $GF(2^{127}-1)$ -based CW MAC	
✓ GCM	[31]	2004	C	CTR encryption + $GF(2^{128})$ -based CW MAC	NIST 800-38D
EAX	[2]	2004	C	CTR encryption + CMAC, a cleaned-up CCM	ISO 19772
\checkmark OCB2	[34]	2004	Ι	OCB1 with AD and alleged speed improvements	ISO 19772
CCFB	[29]	2005	Ι	Similar to RPC [23], but with chaining	
CHM	[18]	2006	C	Beyond-birthday-bound security	
SIV	[36]	2006	C	Deterministic/misuse-resistant AE	RFC 5297
CIP	[17]	2008	C	Beyond-birthday-bound security	
HBS	[20]	2009	C	Deterministic AE. Single key	
BTM	[19]	2009	C	Deterministic AE. Single key, no blockcipher inverse	
✓ OCB3	new	2010	Ι	Refines the prior versions of OCB	

OCB Schematic

Common to OCB1/2/3

- |C| = |P| + authentication tag
- Birthday-bound security
- Parallelizable
- Timing-attack resistant (if cipher is)

OCB Differences

	OCBI (2001)	OCB2 (2004)	OCB3 (2011)
Increment	Table ops	Arithmetic	Table ops
Associated Data	No	Yes	Yes
Cipher Calls	M/n+2	M/n+2	M/n+1.02
Stalls	2	2	0

OCB Schematic

Initial Offset

• Before: $\Delta = E(Nonce)$.

• Amortized cost: 1/64 E + 1 H per message.

Initial Offset

• H is small-domain xor-universal hash.

K		K	$T \oplus (K \leq c)$
X	128		
	$H_{K}(x)$		

	<i>c</i> = 5	<i>c</i> = 8	c = 9	c =
domain	0123	084	0119	0117

Proof H is Universal

- For each c and all $i \neq j$
 - Let $F(K) = H_{K}(i) \oplus H_{K}(j)$
 - Show F(K) linear
- Test appropriate matrices are full rank.

OCB Schematic

How to Increment

• OCBI:
$$\Delta_i = \bigoplus_{j=1...i} (2^{\operatorname{ntz}(j)} \times \Delta_0)$$

= $\Delta_{i-1} \oplus \operatorname{Tbl}[\operatorname{ntz}(i)]$

• OCB2:
$$\Delta_i = 2^i \times \Delta_0$$

= 2 × Δ_{i-1}

• OCB3:Word-based LFSR? [CS]

Word-based LFSR?

- (A, B) = (B, 2A) $(A, B) = (B, (A << 1) \oplus (A >> 1) \oplus (B \land 148))$ $(A, B, C, D) = (C, D, B, 2A \oplus B \oplus D)$ $(A, B, C, D) = (C, D, B, (A << 1) \oplus (A >> 1) \oplus (D \land 107))$ $(A, B, C, D) = (C, D, B, (A << 1) \oplus (A >> 1) \oplus (D << 15))$
- Each verified maximal by testing irreducibility of representative polynomial.
- None best on all architechtures.
 None faster than ntz + table-lookup.

OCB Schematic

Authentication Overhead

Effect of AES-NI

	Käsper/ Schwabe	Westmere AES-NI	How much better?
OCB	8.05 peak	I.48 peak	82%
	9.24 IPI	I.87 IPI	80%
GCM	10.9 peak	3.73 peak	66%
	15.2 IPI	4.53 IPI	70%
CTR	7.74 peak	I.27 peak	84%
	8.98 IPI	I.37 IPI	85%

- OCB harnesses more improvement.
- More so under Sandy Bridge. OCB \approx 1 cpb

Finally

- This is the last OCB. No more revisions.
- Submission to NIST this summer.
- www.cs.ucdavis.edu/~rogaway/ocb/performance has all the data and code used for this paper.